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Identifying the conditions that will produce diffraction-quality

crystals can require very many crystallization experiments.

The use of robots has increased the number of experiments

performed in most laboratories, while in structural genomics

centres tens of thousands of experiments can be produced

every day. Reliable automated evaluation of these experi-

ments is becoming increasingly important. A more robust

classification is achieved by combining different methods of

feature extraction with the use of multiple classifiers.
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1. Introduction

Macromolecular structure determination by X-ray crystallo-

graphy requires numerous experiments to establish the con-

ditions that will produce diffraction-quality crystals. Despite

efforts to model protein-solution thermodynamics (Neal et al.,

1998), there is currently no a priori method to determine the

optimum crystallization strategy for a particular protein. An

exhaustive search of all combinations of reagents and ex-

perimental parameters is impossible and various screens have

been designed to reduce the parameter space for crystal-

lization conditions (see Brzozowski & Walton, 2001, and

references therein). The initial results can provide information

for further experiments, but the process is still highly empirical

and a time-consuming and monotonous stage of the crystal-

lization process is the repeated inspection of the experiments.

The introduction of robots performing many more experi-

ments only exacerbates the situation, particularly in structural

genomics centres. Systems for image capture and storage have

been developed and automatic classification of the images is

becoming increasingly important.

Several research groups have published methods for the

automated analysis of crystallization images, applying a

variety of feature-extraction methods to obtain meaningful

but compact representations for classification. The Hough

transform, first used by Zuk & Ward (1991) to identify crystals,

has been used by various authors to recognize geometric

characteristics. Spraggon et al. (2002) obtained variables from

straight lines detected with the Hough transform and textural

features from correlations between grey levels at various

distances and directions. Bern et al. (2004) used a curve-

tracking algorithm to detect further features, while Cumbaa et

al. (2003) generated statistical variables using the Radon

transform and a Laplacian operator.

Images may also be transformed before quantifiable char-

acteristics are obtained. Wavelet transforms effectively

decompose an image into different levels of detail and have

been applied extensively in image analysis. Watts et al. (2008)



used statistical measures from different

levels of the transform to classify the

contents of the crystallization drop as a

whole, while Pan et al. (2006) used

features based on texture and the Gabor

wavelet decomposition to classify over-

lapping sub-images within the crystal-

lization drop. In another approach, a

prototype image-acquisition system is

presented in Jurisica et al. (2001) which

uses the Fourier transform. The Fourier

transform can identify periodic and

directional structure and has been used

widely to classify textures. Both Bern et

al. (2004) and Walker et al. (2007) have

made use of Fourier analysis in the clas-

sification of crystallization images.

However features are extracted, the

analysis must be restricted to the crys-

tallization drop, so that all methods

require identification of the drop

boundary. In Wilson (2002), individual

objects within the drop are then located

and evaluated separately. In this case

features are extracted from each object

rather than the crystallization drop as a

whole. This spatial domain method has

been compared with texture-based

methods using both wavelet transforms in

Watts et al. (2008) and Fourier transforms

in Walker et al. (2007). It was found that

combining complementary methods

could improve classification results.

Various statistical classifiers and

machine-learning algorithms have been

used to classify crystallization images

using the extracted features. Self-orga-

nizing maps were used by Spraggon et al.

(2002) and Wilson (2004), while Bern et

al. (2004) used a decision-tree classifier.

Pan et al. (2006) used support-vector

machines (SVM) for the classification of

crystallization images and linear discri-

minant analysis (LDA) has also been

used (Cumbaa et al., 2003; Cumbaa &

Jurasica, 2005). Although accuracy rates

are given, direct comparison of the results

in the separate studies is not possible as

different test images were used in each

case. Furthermore, the number of classes

used differs significantly. However,

Kawabata et al. (2006) compared the

performance of SVM and LDA classifiers

on a data set of 300 images. Using the

leave-one-out method, they reported

88.7% accuracy by SVM compared with

76.3% accuracy by LDA for a binary
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Figure 1
Example images for each of the seven classes.
The empty drop in (a) would be assigned to
class 0. The skin on the drop would give rise to
objects so that the image in (b) would be
assigned to class 1. The precipitate in the
image in (c) would be assigned to class 2. The
oil drops in image (d) would score 3, the
microcrystals shown in (e) would score 4 and
the larger needle crystals in (f) would score 5.
Finally, the good single crystals in (g) would
score 6.



classification of the images. Zhu et al. (2004) also compared

the results from two different classifiers. Binary classification

of 520 images was carried out using an SVM classifier and a

C5.0 classifier using tenfold cross-validation and it was found

that the C5.0 classifier gave better results. Although internal

cross-validation was used during training in these compar-

isons, the results on an independent test set were not given so

it is not possible to assess how much the different classifiers

were over-fitting the data.

Here, we provide a systematic evaluation of different clas-

sifiers using data from the object-based method (Wilson, 2002)

and the wavelet-based method (Watts et al., 2008). Methods to

combine the data from these complementary techniques using

multiple-classifier systems are investigated.

2. Image data and class system

The Oxford Protein Production Facility (OPPF) at the

University of Oxford supplied the images used in this study.

Crystallization experiments were performed in 96-well

Greiner plates (microtitre format) and the images were taken

using an automated Oasis 1700 imaging system (Veeco,

Cambridge, England). Native images are 1024 � 1024 � 8 bit

bitmap (BMP) images (�1 Mbyte in size), corresponding to a

pixel width of about 3 mm.

The number of classes used to evaluate crystallization

experiments varies between authors, but many favour a binary

system simply indicating the presence or absence of crystals

(Cumbaa et al., 2003; Zhu et al., 2004; Kawabata et al., 2006;

Pan et al., 2006). Whilst the identification of crystals is always

the primary aim, a two-class system gives no information for

subsequent trials. In the absence of crystals, other phenomena

can indicate conditions that are close to those required and

can be refined in optimization protocols to obtain diffraction-

quality crystals (Bergfors, 2002). Comprehensive molecular

characterization and prior experience allows a more syste-

matic approach to crystallization and a number of laboratories

have set up in-house databases in order to develop crystal-

lization strategies (Hennessy et al., 2000). The collection of

information on both successful and failed experiments offers

the potential for crystallization parameter prediction using

data-mining and machine-learning algorithms (Rupp & Wang,

2004; Cumbaa & Jurisica, 2005). An image-analysis system

that can classify different experimental results as well as

identifying the presence of crystals will provide valuable

information for the development of automated screening

procedures.

In the image-analysis system ALICE (AnaLysis of Images

from Crystallization Experiments; Wilson, 2002; Watts et al.,

2008) being developed in York, the main aim is to sort the

images and drastically reduce the number of images to be

inspected by eye. We use a seven-class system to score the

images, allowing them to be examined in order of merit. As

soon as some high-scoring conditions are confirmed, no

further images need be considered. The scores range from 0

for an empty drop to 6 for drops containing good crystals.

Example images from each of the seven classes are shown in

Fig. 1 and examples of typical experimental results associated

with each class are given in Table 1. The table also shows how

the scores are pooled to give just three classes for the purposes

of reporting the results.

The training and test sets consist of images obtained from

the Oxford Protein Production Facility. Directories consisting

of 96 bitmap images, each corresponding to a crystallization

tray reported by crystallographers to contain some favourable

experimental results, were copied from the OPPF. The images

in each directory were inspected by eye and sorted into the

seven classes described above, with the classification of each

image agreed on by three individuals. No special requirements

were placed on the images and they were simply assigned to

classes until the desired number (400) had been reached for

any particular class. As soon as a complete set of 400 images

was available for some class, further images from that class

were ignored. The first 250 images from each of the seven

classes were used to train the classification algorithms and the

other 150 images from each class formed an independent test

set. If the crystallization drop cannot be located (because, for

example, the drop edge is indistinct), ALICE does no further

processing and simply outputs ‘No mask found’. This was the

case for some images in the training and test sets and explains

why the results are reported for <150 images for some classes

(see Table 6a).

3. Feature extraction

ALICE combines techniques for feature extraction to exploit

different sources of information. Wavelet transforms, which

effectively decompose an image into different levels of detail,

are used to extract features from the crystallization drop as a

whole. This is achieved by modelling the distribution of

wavelet coefficients in each sub-image. The model parameters

together with statistical measures provide variables that can

be used for classification. As well as the first-order statistics

determined from each detail sub-image, second-order statis-

tics are calculated from joint probability distributions. The

decay of the wavelet coefficients across the levels of the

transform can be used to characterize different types of edge.

Sharp changes such as crystal edges give rise to large wavelet

coefficients across all scales, whereas smoother changes in
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Table 1
Examples of experimental outcomes for each of the seven classes
together with the class it relates to in the reduced class system (i.e. pooled
results).

Class, seven-
class system Result

Class, three-
class system

0 Empty drop 0
1 Denatured protein, skin, dirt,

foreign bodies such as fibres
2 Amorphous precipitate 1
3 Oil drops, phase separation,

crystalline precipitate
4 Microcrystals, sea urchins 2
5 Crystal clusters, needles
6 Single crystals



greyscale arising from shadows, for example, will produce

wavelet coefficients that change gradually with subsequent

levels of the transform. This information can be extracted by

considering the correlation between corresponding wavelet

coefficients on different levels of the transform. Full details of

the variables calculated from the wavelet-transformed images

are given elsewhere (Watts et al., 2008). The feature vectors

consisting of these variables calculated over a training set can

be used in learning algorithms to associate particular values

with an image class.

In a complementary approach, individual objects are iden-

tified within the crystallization drop. Objects are defined as

connected sets of pixels above a threshold determined by the

intensity statistics and each object is evaluated separately.

Boundary-related variables include measures of curvature and

the length of straight sections. Ordered patterns in the

gradient direction anywhere within objects, in straight lines or

blocks, indicate the presence of regular objects and various

shape descriptors and statistical measures provide information

about other types of object (Wilson, 2002). In this case, the

feature vectors relate to individual objects and the classifica-

tion must be converted into an image score. This is achieved

by producing a new feature vector in which the variables are

the percentage of the total number of objects assigned to each

class and the percentage of the total number of pixels in each

class. This vector of length 14 is used in a second-level clas-

sification to provide a score for the image.

4. Classifiers

Classifiers with inherently different mechanisms for class

separation were chosen to fully exploit differences in the data.

Different classifier methodologies have different classification

rates and the sets of mis-classifications do not necessarily

overlap. It has been shown that the combination of several

classifiers can provide more robust classification (see, for

example, Dietterich, 2000) and that even poor classifiers and

poor feature sets can contain information that will improve the

performance of classifier ensembles (Duin & Tax, 2000). We

found that the best individual classifiers for our data (both

object-based and wavelet features) were support-vector

machines with both a linear (SVM_linear) and a radial basis-

function kernel (SVM_RBF) and that the combination of

even just these two related classifiers gave improved results.

SVMs are supervised learning methods, that are also known as

maximum margin classifiers as they simultaneously maximize

the geometric margin between classes whilst minimizing the

classification error. Learning-vector quantization (LVQ) and

self-organizing maps (SOMs) on the other hand are special

cases of artificial neural networks in which the weights of the

network are changed gradually in order to classify the training

data correctly. Both methods performed well as individual

classifiers. The classification rates obtained with linear discri-

minant analysis (LDA) and naive Bayes individually were

lower. We found that while LDA could be successfully

combined with other classifiers, the naive Bayes classification

actually reduced combined classification rates. Decision trees,

such as the C5.0 classifier, that use if–then rules to separate the

classes were found to expand too much during training so as to

be impractical for prediction. Restrictions on tree size gave

rules that could be used for class prediction, but the results

were poor.

These classifiers are all supervised learning techniques and

must be trained on a set of input feature vectors xi = (xi1, xi2,

. . . , xik) of known class ci for i = 1, . . . , C say. Supervised

classifiers learn to predict the output class for new input

vectors having seen the N training examples. The distinction is

in the way the different classifiers create rules to associate the

input training data with the output class label. Brief descrip-

tions of the classification mechanisms for the best individual

classifiers are given in the following sections and the different

separation boundaries obtained are illustrated in Fig. 2. Whilst

LDA and SVMs with a linear kernel obviously both have

linear separation boundaries, SOMs, LVQs and SVMs with a

radial basis kernel all allow the separation boundary to be

nonlinear.

4.1. Support-vector machines

SVM classifiers were originally developed to differentiate

between just two classes, ci 2 {�1, +1}, i = 1, 2. They do this by

finding the optimal separation hyperplane, i.e. the hyperplane

with maximal margin of separation between classes and

minimum classification errors. For linearly separable classes

the hyperplane is calculated in the original input space, but

nonlinearly separable classes can be dealt with by applying a

nonlinear transformation of the input space to a higher

dimensional feature space in which the classes are linearly

separable. As the nonlinear mappings or kernels allow

computations to be performed in the input space, SVMs are

not computationally expensive.

In the linearly separable case, a hyperplane is defined by

H ¼
Pk
i¼1

!ixi þ b; ð1Þ

where k is the length of the feature vector and the parameters

b and xi = (!i1, !i2, . . . , !ik) for i = 1, . . . , C (the number of

classes) are determined during training so that the decision

boundary is given by H = 0. Thus, an input vector x is assigned

to class c1 = �1 if H < 0 and to c2 = +1 if H > 0. In order to

generalize to unseen data, the distance between the training

samples and the decision boundary should be maximized. The

training samples closest to the decision boundary are called

support vectors and the margin is defined as the width that the

boundary could be increased by before touching a support

vector. The linear SVM classifier finds the decision boundary

that maximizes this margin (Cortes & Vapnik, 1995). It can be

shown that SVM learning involves finding the multipliers �i

that maximize the Lagrangian

Lð�Þ ¼
PN
i¼1

�i �
1

2

PN
i¼1

PN
j¼1

�i�jcicjx
T
i xj

subject to �i � 0 and
PN
i¼0

�ici ¼ 0 ð2Þ
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for classes ci, i = 1, . . . , N and input feature vectors xi = (xi1,

xi2, . . . , xik), where xi
T denotes the transpose of xi.

Nonlinear SVM classifiers can be created by replacing the

dot products in (1) with a nonlinear kernel function. The

kernel function implicitly maps the example data points into a

higher dimensional feature space and takes the inner product

in that feature space. This allows the maximum-margin

hyperplane to be fitted in the transformed feature space and

can be achieved by applying different nonlinear mappings

such as polynomial, radial basis, sigmoidal or spline functions.

Although the classifier is a hyperplane in the high-dimensional

space it can be non-linear in the original input space.

Separation of the feature vectors by a hyperplane works

when there are only two classes. Several approaches have been

suggested to deal with more than two classes, the most popular

being ‘one against many’, in which each class is separated in

turn from all other merged classes, and ‘one against one’,

requiring C(C� 1)/2 models where C is the number of classes.

SVMs have been shown to give comparable or better results

than neural networks and other statistical models on many

problems in computer vision, pattern

recognition and data mining (Meyer et

al., 2003).

4.2. Learning-vector quantization and
self-organizing maps

When used for classification,

learning-vector quantization (LVQ)

aims to represent the feature vectors in

the training set by a smaller number of

prototype vectors, each with an asso-

ciated class. These prototype vectors,

also known as codebook vectors, have a

higher between-class variation and

lower within-class variation than the

original input data. LVQs apply natu-

rally to multi-class systems with new

feature vectors classified according to

the class of the closest (in terms of

Euclidean distance) codebook vector.

LVQ is an artificial neural network

with a layer of input neurons and a layer

of output neurons. Unlike other neural

networks, the weights can be readily

interpreted as prototype vectors wi =

(wi1, wi2, . . . , wik) representing typical

data in the same input space. In general,

several prototypes will be used to

represent each class. The weights of the

network are changed in order to classify

the training data correctly in a compe-

titive learning approach. In each cycle

of an iterative training procedure, each

vector in the training set is presented to

the network and the winning codebook

vector identified as having weights

closest to the input vector. The weights of the winning vector

are then updated, as shown in (3), depending on whether the

assigned class c in the output layer is same as the actual class of

the input vector xi, i.e.

wjðnewÞ ¼
wjðoldÞ þ �½xij � wjðoldÞ� if c ¼ ci

wjðoldÞ � �½xij � wjðoldÞ� if c 6¼ ci

�
; ð3Þ

where the learning rate � is gradually decreased over a

number of cycles.

The original LVQ algorithm was the precursor of self-

organizing maps (SOMs; Kohonen, 1987). The aim of the

SOM is to cluster the prototype vectors to produce a two-

dimensional map that preserves the topology of the original

data. During training, physically close neurons, or nodes in the

map, learn to recognize similar input patterns. This is achieved

by updating the weights not only of the winning neuron but

also those within a specified neighbourhood. SOMs are

commonly used for unsupervised learning, i.e. without using

class information, to identify patterns in the data. However,

they can also be used for classification by assigning the class of
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Figure 2
The dotted lines in (a) and (b) pass through the support vectors defining the separation hyperplane
(solid line) for the linear and nonlinear cases, respectively. Support-vector machines (SVMs) find
support vectors which define the hyperplane that maximizes the margin of separation (the distance
between the dotted lines) whilst minimizing classification errors. The optimal axes of separation
onto which the data are projected using linear discriminant analysis (LDA) are illustrated in (c).
The resultant data have better between-class separation and lower within-class spread. Codebook
vectors used to represent subclasses of the input data using learning-vector quantization (LVQ) are
illustrated in (d), showing how samples are assigned to the nearest subclass before being given the
class that the subclass belongs to.



the closest training vector to each node after the final map has

been created.

4.3. Linear discriminant analysis

The objective of linear discriminant analysis (LDA) is to

find the linear combination of feature variables that maxi-

mizes the difference between classes. A measure of class

separation is given by Fisher’s criterion, the ratio of between-

class variance to within-class variance,

J ¼
SB

SW

¼ S�1
w SB; ð4Þ

where SB is the between-class covariance matrix given by

SB ¼
1

ðC � 1Þ

PC
j¼1

njðxj � xÞðxj � xÞT ð5Þ

and SW is the within-class covariance matrix given by

SW ¼
1

ðN � CÞ

PC
j¼1

P
x2cj

ðxj � xÞðxj � xÞT; ð6Þ

where xj and x are the mean of the jth class and the global

mean, respectively, C is the number of classes, cj the jth class

and nj is the number of samples in class j.

LDA applies a linear transformation, D, to the data in order

to maximize the separation between classes. The optimal

transformation, DOPT, can be obtained by solving the

following optimization problem (Duda et al., 2000),

DOPT
¼ arg max

D
trace

DTSBD

DTSWD

� �� �
; ð7Þ

where arg maxx f(x) means the value of x for which f(x) has the

maximum value and trace is the sum of the elements on the

main diagonal.

LDA is used extensively for classification and has been

successful in many applications.

5. Combining classifiers

Previous studies have shown that combining classifiers can

improve overall classification performance (Kittler et al., 1998;

Al-Ani & Deriche, 2002; Lu et al., 2003). Methods have

included the combination of different classifiers on the same

feature set and the use of different feature sets, and it has been

shown that the best performance is achieved by combining

both different feature sets and different classifiers (Duin &

Tax, 2000).

A classifier combination is useful if the individual classifiers

are largely independent and utilize different methodologies to

take advantage of the data characteristics. A linear classifier,

such as LDA for example, exploits different features in a data

set to a nonlinear neural network classifier. Classification

independency can also be achieved by using different training

sets. Re-sampling techniques such as bootstrapping and rota-

tion can be used to artificially create multiple training sets

from the same data. Different features in the images can also

be exploited to provide multiple training sets. For example,

Jain et al. (2000) used Fourier transforms and principal

component analysis among other techniques to extract

different features from the same image set. We found that the

use of artificially created training sets from the same data gave

little improvement in the results but that the combination of

the object-based method with a texture-based approach using

Fourier- or wavelet-transformed images significantly increased

correct classification rates (Walker et al., 2007; Watts et al.,

2008).

Several methods for combining individual classifier deci-

sions have been proposed. Here, we consider methods that do

not require further training. These include simple averaging

over the class outputs and the use of order statistics such as the

minimum, maximum or median of the class outputs. Majority

voting assigns the class that is selected by the majority of

classifiers and the probability sum rule involves addition of the

probabilities generated by different classifiers for each class to

give a final class with the highest probability.

An added complication is the fact that the classified objects

must be combined in some way in order to give an image score.

The results of the object classification can be used to provide

variables in a second-level classification. This offers the

possibility of using multiple classifiers both to categorize

individual objects and then to classify the image. However, the

high speed at which images are acquired places considerable

constraints on the image processing and classification success

has to be balanced against computational efficiency. This was

also the reason that the Fourier-based method was not

included in the classification scheme. Whilst using multiple

classifiers does greatly improve the results for individual

object classification, a second-level multiple classifier system

to convert the object scores into an image score did not give

significantly better classification rates than a single classifier.

We therefore chose the best single classifier, an SVM classifier

with an RBF kernel, for this stage. The flowchart in Fig. 3

shows the image-classification system used. Multiple classifiers

are used to determine an image class from the statistical

variables obtained after wavelet analysis as well as for the

classification of individual objects. However, a single classifier

is used to provide the image score from the object classifica-

tion before all image scores are combined to give the final class

for the image.

6. Results

A full confusion matrix comparing the true image class with

the predicted class has 49 entries for a seven-class system,

making comparisons difficult. In order to compare classifica-

tion performances, we merged the results to give just three

classes. However, it should be emphasized that the results

were obtained using a seven-class system, which we believe

gives greater sorting ability. In addition, we reduced the

confusion matrices to a single number for easier comparison of

the different classification methods. Table 2(a) shows a

confusion matrix for the classification of crystallization images

by different crystallographers. The rows correspond to the

mean image scores and the columns to the classes chosen by
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the crystallographers, so that the diagonal entries give the

percentage of exact matches. The further away from the

diagonal the greater the disagreement, with images classified

lower than the mean score above the diagonal and images

classified higher below the diagonal. The results are for a

different set of images to those used for either training or

testing ALICE. It can be seen that there are different numbers

of images in each class, with empty drops (class 0) and those

containing precipitate (class 2) considerably outnumbering

other classes. This set of images consists of ten crystallization

plates imaged consecutively at the OPPF in Oxford with a

further �300 images added to increase the number of more

interesting outcomes. The fact that the classes are so un-

balanced reflects the real situation but makes the image set

unsuitable for training. Each row in the table corresponds to

the ‘true’ class, given here by the mean of the image scores

over 16 crystallographers. The columns correspond to the

‘predicted’ class, i.e. the class chosen by the different crystal-

lographers. It can be seen that class 6 (single crystal) images

have high agreement rates as might be expected, with 84.7%

total agreement and another 13.7% being classified as class 5

(crystal cluster). Unsurprisingly, class 0 (empty drops) also

cause little difference of opinion, with 91.6% exact agreement.

Other classes show more variation, with images classified by

the mean image score as 3, 4 and 5 being assigned to every

class possible. However, the table shows that most mis-clas-

sifications or, more accurately, ‘differently classified’ images

are assigned to an adjacent class. This is not so apparent when

the classes are merged to give just three classes as in Table 2(b)

and it is clear that reducing the number of classes can only be

detrimental to classification.

Whilst images assigned to a neighbouring class need not be

considered incorrect (as two different crystallographers may

disagree on the ‘correct’ class), crystals classed as an empty

drop, for example, most certainly are and should be penalized

far more. The overall classification rate (CR), or percentage of

exact classifications, does not allow for this and therefore gives

little information about the classification. The classification

rate for the data in Table 2(a), i.e. the agreement rate between

crystallographers, is only 62.9%, which does not reflect the

distribution in the table. We therefore define a continuous

classification rate (CCR), which take into account how bad

any mis-classifications are.

The CCR is calculated from the confusion matrix as

Z ¼
1

N

PN�1

i¼0

1

n

PN�1

j¼0

wijCi;j; ð8Þ

where

n ¼ max
k2ð0;N�1Þ

ji� kj

and wij = (n � |i � j|). Here, N is the total number of classes

and Ci,j is the percentage of class i images classified as class j.

research papers

Acta Cryst. (2008). D64, 823–833 Buchala & Wilson � Classification of crystallization images 829

Figure 3
Flowchart of image-classification system.



The CCR for the data in Table 2(a) is 89.0, which gives a better

indication of the actual results.

Training data sets obtained from individual objects within

the crystallization drop (object data) and from statistical

analysis of wavelet-transformed images (wavelet data) were

used to train five different classifiers: learning-vector quanti-

zation (LVQ), a self-organizing map (SOM), linear discrimi-

nant analysis (LDA) and support-vector machines using both

a linear kernel (SVM_linear) and radial basis functions

(SVM_RBF). For each classifier, the object-classification

results were used to provide 14 variables: the number of pixels

in each object class as a percentage of the total number of

pixels in the drop and the number of objects in each class as a

percentage of the total number of objects. These variables

were used in a second-level classification using an SVM_RBF

classifier to provide an image score. Classification rates for the

individual classifiers are given in Table 3 and, for the object

data, show the results after the object scores have been

combined to give the image class. Although the CCRs for

some of the classifiers look very similar, the distribution of

classifications can be quite different. For example, the CCRs

for object-based classification using SOM and linear SVM

classifiers are 80.1 and 80.5, respectively, but the confusion

tables show the differences in the classification (see the

reduced classification tables in Table 4). This independence

between classifiers allows combination schemes to improve

the results.

The classifier combination schemes tested used majority

voting, the sum rule and taking the maximum, median and

mean output class. Majority voting assigns the class that is

selected by the majority of classifiers. In the event of a tie, we

took the maximum class to minimize the probability of missing

crystals. As long as there are not too many, false positives are

not as serious as false negatives, but we found that simply

taking the maximum class from all classifiers did cause a lot of

empty drops to be classified as crystals. Although the crystals

in the image shown in Fig. 4(b) are picked up as objects and

classified correctly, the statistical analysis of the wavelet data is

based on the whole drop, which is mostly empty. This not only

leads to such images being classified incorrectly as empty

drops using texture-based methods, but also associates empty

drop-like variables with crystals during training. Using the

maximum class allows the false positives this creates to dictate

the final class. This can be avoided by using the mean or

median class. The median is less sensitive to outliers, which

explains why better results were obtained using the median

class as the final output. The sum rule is more complicated and

involves the generation of class probabilities from each clas-

sifier rather than a single output class. These probabilities are

then summed and the class with the highest probability sum

chosen. As some classifiers naturally output a single predicted

class rather than a probability for each class, the probability

sum method can be more difficult and crucially more

computationally expensive to implement. Therefore, as the

results for the first scheme were so much worse than the

median or majority-voting method, it was not implemented for

other schemes.

The five combination schemes were tested using all possible

subsets of the potential classifiers. It was found that most

classifiers added to the classification ability, although LDA

actually reduced classification rates. As LDA produces so

many false positives (see Table 4c), this classifier is most

unfavourable when the maximum class is used but in any case

does not improve the results. Another classifier that does not

perform particularly well individually is the SOM with wavelet

data (CCR 77.8; see Table 4d). However, comparison of

scheme 1 with scheme 4 in Table 5 shows that some

improvement is achieved by including this classifier.
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Table 2
Agreement rates between crystallographers on the class of an image.

The rows correspond to the mean image scores and the columns to the classes
chosen by the 16 crystallographers. The results are given as percentages of the
total number of images in each class (according to the mean score), with the
entries on the main diagonal showing the percentage of exact matches with the
mean score. The full confusion matrix is shown in (a) and the reduced class
system in (b). Although the results shown relate to a different set of images to
that used for testing ALICE, the overlap between classes is demonstrated and
must be taken into account when assessing the accuracy of automated
classification.

(a) Full confusion matrix.

Predicted class

Mean class No. of images 6 5 4 3 2 1 0

6 43 84.7 13.7 1.2 0.0 0.0 0.4 0.0
5 109 11.2 68.5 17.7 1.5 0.1 0.3 0.4
4 71 3.3 29.0 50.4 12.6 1.8 1.3 1.1
3 99 0.6 2.0 18.9 46.7 23.5 6.5 1.4
2 428 0.0 0.1 1.9 20.6 59.3 14.4 3.5
1 185 0.1 0.0 0.8 8.5 18.1 39.5 32.5
0 358 0.0 0.0 0.1 0.9 1.8 5.4 91.6

(b) Reduced class system.

Predicted class

Real class No. of images 2 1 0

2 223 93.2 5.3 1.2
1 527 11.8 75.1 12.9
0 543 0.5 14.7 84.5

Table 3
Classification rates for individual classifiers for both the object data set
and the wavelet data set.

After classification of objects within an image, the results from each classifier
were combined to give an image score using an SVM_RBF classifier. Thus, the
classification rates (CR) and continuous classification rates (CCR) in the table
relate to the classification of images rather than individual objects. Therefore,
all rates can be compared directly.

CR (%) CCR

Objects, LVQ 58.0 81.4
Objects, LDA 35.3 71.2
Objects, SOM 54.3 80.1
Objects, SVM_linear 57.1 80.5
Objects, SVM_RBF 57.9 82.4
Wavelets, LVQ 51.6 79.1
Wavelets, SOM 48.9 77.8
Wavelets, SVM_linear 52.5 80.3
Wavelets, SVM_RBF 51.5 80.0



The combination method using the median class consis-

tently performs better than any other classification scheme,

with the best results obtained using four classifiers, SOM,

LVQ, SVM_RBF and SVM_linear, on both object data and

wavelet data, so that eight classifiers are combined in total.

The full confusion matrix and reduced table for this classifi-

cation scheme are given in Table 6 for comparison with Table 2.

However, it should be pointed out that the results are

obtained from different data sets, as the unequal classes in the

data set used to obtain the results in Table 2 make it unsuitable

for either training or testing classification techniques.

Fig. 4(a) shows an image that was mis-classified as an empty

drop by all classifiers using the wavelet data. Although the

drop contains crystals, most of the drop is clear, causing

problems when using statistical measures. However, the image

was classified correctly using the object-based method. In

contrast, the image in Fig. 4(b) has crystals throughout the

drop and was classified correctly by all classifiers with both

data sets. The image in Fig. 4(c) was assigned to various classes

(ranging from 1 to 5) using object data but was classified

correctly by all classifiers using the wavelet data. Thus, the two

methods are complementary and, as these examples show,

classification rates can be improved by their combination.

Furthermore, the use of several classifiers can provide a more

robust classification.

7. Conclusions

When comparing the results from different classifiers and

different classifier combination schemes, it is important to

consider the natural overlap between classes. This reflects the

continuous nature of the outcomes of crystallization experi-

ments and will be the case however many discrete classes are

used. The lack of agreement between crystallographers on the

‘true’ class of an image shows that mis-classification into

adjacent classes need not necessarily be considered incorrect.

We have defined a continuous classification rate, CCR, which

provides a number (rather than a percentage) between 0 and
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Table 4
Reduced classification tables for individual classifiers.

(a) The results of classification using the object data set (after combination to
provide an image score) for the SOM.

Predicted class

Real class No. of images 2 1 0

2 449 70.8 19.0 10.2
1 299 12.0 82.0 6.0
0 294 8.1 12.5 79.5

(b) The results of classification using the object data set (after combination to
provide an image score) for the linear SVM.

Predicted class

Real class No. of images 2 1 0

2 449 78.1 12.7 9.1
1 299 13.0 77.3 9.7
0 294 12.2 4.4 83.4

(c) The results of classification using the object data set (after combination to
provide an image score) for LDA.

Predicted class

Real class No. of images 2 1 0

2 449 55.9 33.9 10.2
1 299 36.0 55.0 9.0
0 294 17.0 15.3 67.7

(d) The results of SOM classification using the wavelet data set.

Predicted class

Real class No. of images 2 1 0

2 449 72.3 18.7 8.9
1 299 12.4 72.2 15.4
0 294 13.9 16.9 69.2

Table 5
Comparison of combination schemes.

Scheme 1 combines the four classifiers SOM, LVQ, SVM_RBF and
SVM_linear on both object data and wavelet data, giving eight classifiers in
total. Scheme 2 is the same as scheme 1 with the addition of LDA on the object
data. Scheme 3 is the same as scheme 2 but without the SOM classifier on the
wavelet data. Scheme 4 is the same as scheme 1 but without the SOM classifier
on the wavelet data. The probability sum method was difficult.

Combination
method Scheme 1 Scheme 2 Scheme 3 Scheme 4

CR
(%) CCR

CR
(%) CCR

CR
(%) CCR

CR
(%) CCR

Median 60.3 87.0 60.3 85.4 60.3 85.4 59.0 84.7
Mean 50.7 84.7 48.4 84.2 48.4 84.2 51.5 84.6
Majority vote 61.8 84.3 61.5 84.0 61.5 84.0 60.5 83.6
Probability sum 49.4 78.8 — — — — — —
Maximum 44.5 74.0 35.4 68.1 36.9 69.1 46.6 75.2

Table 6
Classification rates obtained using the median class from eight classifiers:
SOM, LVQ, SVM_RBF and SVM_linear with each of the object and
wavelet data sets.

The rows correspond to the image scores assigned visually and the columns to
the classes predicted so that the diagonal entries show exact matches. The
results are given as percentages of the total number of images in each class.

(a) Full confusion matrix.

Predicted class

Real class No. of images 6 5 4 3 2 1 0

6 150 56.0 18.7 12.7 8.0 0.7 1.3 2.7
5 150 27.3 31.3 34.7 4.7 0.7 0.0 1.3
4 149 14.8 22.8 32.9 19.5 6.0 0.7 3.4
3 150 4.0 4.0 10.0 50.7 23.3 4.7 3.3
2 148 0.0 0.0 0.0 4.7 94.6 0.7 0.0
1 148 3.4 4.1 7.4 8.1 10.8 64.9 1.4
0 146 1.4 1.4 0.0 1.4 0.0 2.7 93.2

(b) Reduced class system.

Predicted class

Real class No. of images 2 1 0

2 449 83.7 13.2 3.1
1 299 9.0 86.7 4.3
0 294 8.8 10.1 81.1
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100 that takes into account how far from the real class the

predicted class is and therefore gives a better representation

of the classification results.

We found that the single best classifier for object classifi-

cation and for the combination of object scores into an image

score was the SVM classifier with an RBF (i.e. nonlinear)

kernel. This classifier was also very successful with statistical

data extracted from the drop as a whole, although linear

classification (again using SVM) actually performed slightly

better in this case. We found that even classifiers that did not

give particularly good results individually, such as the SOM,

could improve the results in a classifier ensemble. The com-

bination of different classifiers gave significantly better results

for both object data and drop data, but the use of multiple

classifiers to provide an image score from individual object

scores was not deemed worthwhile.

The best overall results were obtained by combining the two

feature sets (object data and drop data) using four classifiers:

two SVM classifiers, one with a linear kernel and one with a

nonlinear kernel, and two neural networks, learning-vector

quantization and a self-organizing map. Taking the median of

all eight classifier outputs gave the optimal combination

scheme, although majority voting gave very similar results.

Funding for SB was provided by BIOXHIT [Biocrystallo-

graphy (X) on a Highly Integrated Technology Platform for

European Structural Genomics] under the 6th Framework

Programme of the European Commission (LSHG-CT-2003-

503420).

Figure 4
The image in (a) was mis-classified as an empty drop by all classifiers using the wavelet data but was classified correctly using object data, whereas the
image in (b) was classified correctly as containing crystals by all classifiers with both data sets. The image in (c) was assigned to various classes (ranging
from 1 to 5) using object data, but was classified correctly by all classifiers using the wavelet data.
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